Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes.

نویسندگان

  • Takeshi Aiba
  • Geoffrey G Hesketh
  • Ting Liu
  • Rachael Carlisle
  • Maria Celeste Villa-Abrille
  • Brian O'Rourke
  • Fadi G Akar
  • Gordon F Tomaselli
چکیده

AIMS Calmodulin (CaM) regulates Na+ channel gating through binding to an IQ-like motif in the C-terminus. Ca2+/CaM-dependent protein kinase II (CaMKII) regulates Ca2+ handling, and chronic overactivity of CaMKII is associated with left ventricular hypertrophy and dysfunction and lethal arrhythmias. However, the acute effects of Ca2+/CaM and CaMKII on cardiac Na+ channels are not fully understood. METHODS AND RESULTS Purified Na(V)1.5-glutathione-S-transferase fusion peptides were phosphorylated in vitro by CaMKII predominantly on the I-II linker. Whole-cell voltage-clamp was used to measure Na+ current (I(Na)) in isolated guinea-pig ventricular myocytes in the absence or presence of CaM or CaMKII in the pipette solution. CaMKII shifted the voltage dependence of Na+ channel availability by approximately +5 mV, hastened recovery from inactivation, decreased entry into intermediate or slow inactivation, and increased persistent (late) current, but did not change I(Na) decay. These CaMKII-induced changes of Na+ channel gating were completely abolished by a specific CaMKII inhibitor, autocamtide-2-related inhibitory peptide (AIP). Ca2+/CaM alone reproduced the CaMKII-induced changes of I(Na) availability and the fraction of channels undergoing slow inactivation, but did not alter recovery from inactivation or the magnitude of the late current. Furthermore, the CaM-induced changes were also completely abolished by AIP. On the other hand, cAMP-dependent protein kinase A inhibitors did not abolish the CaM/CaMKII-induced alterations of I(Na) function. CONCLUSION Ca2+/CaM and CaMKII have distinct effects on the inactivation phenotype of cardiac Na+ channels. The differences are consistent with CaM-independent effects of CaMKII on cardiac Na+ channel gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Na channel regulation by Ca/calmodulin and Ca/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Na channel regulation by Ca/calmodu...

متن کامل

Calmodulin kinase II activation is required for the maintenance of basal activity of L-type Ca2+ channels in guinea-pig ventricular myocytes.

The roles of calmodulin (CaM)-dependent protein kinase II (CaMKII) in the maintenance of basal activity and the reversion of run-down of L-type Ca2+ channels were studied in guinea-pig ventricular myocytes by the patch-clamp technique. In the cell-attached configuration, the Ca2+-channel activity was inhibited to 82% - 26% by 1-10 microM KN-93 and to 92% - 66% by 0.1-1 microM autocamtide-2-rela...

متن کامل

Calcium-dependent regulation of voltage-gated sodium channels in cardiac myocytes: just the beginning?

This editorial refers to 'Na + channel regulation by Ca 2+ /calmodulin and Ca 2+ /calmodulin-depndent protein kinase II in guinea-pig ventricular myocytes' by T.

متن کامل

Subcellular mechanism for Ca(2+)-dependent enhancement of delayed rectifier K+ current in isolated membrane patches of guinea pig ventricular myocytes.

Intracellular Ca2+ augments delayed rectifier K+ current (IK) in cardiac myocytes, which may play a major modulatory role in repolarization of action potentials. We investigated subcellular mechanisms for Ca(2+)-induced enhancement of IK in large-pipette inside-out membrane patches excised from isolated guinea pig ventricular myocytes. When [Ca2+]i was raised from 10(-8) to 10(-6) mol/L, the am...

متن کامل

Ca2+/calmodulin-dependent kinase II-dependent regulation of atrial myocyte late Na+ current, Ca2+ cycling, and excitability: a mathematical modeling study.

Atrial fibrillation (AF) affects more than three million people per year in the United States and is associated with high morbidity and mortality. Both electrical and structural remodeling contribute to AF, but the molecular pathways underlying AF pathogenesis are not well understood. Recently, a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the regulation of persistent "late...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 85 3  شماره 

صفحات  -

تاریخ انتشار 2010